Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia.
نویسندگان
چکیده
AIMS In myocardial ischaemia, vascular endothelial growth factor (VEGF) induces permeability by activating a signalling pathway that includes VEGF receptor 2 (VEGFR2), resulting in increased oedema and inflammation and thereby expanding the area of tissue damage. In this study, we investigated the role of receptor-interacting protein 2 (Rip2) in VEGF signalling and myocardial ischaemia/reperfusion injury. METHODS AND RESULTS To determine whether Rip2 has a role in VEGF signalling, we used cultured endothelial cells in which Rip2 was or was not inactivated. In Rip2-deficient endothelial cells, stimulation with VEGF resulted in more rapid kinetics of VEGFR2 phosphorylation than in control cells. Rip2 deficiency also enhanced VEGF-induced activation of ERK1/2, suggesting an increased propensity for endothelial permeability. In a mouse model of myocardial ischaemia, Rip2 deficiency resulted in enhanced vascular permeability, increased oedema and expanding area of myocardial damage, and markedly reduced heart function after long-term follow-up. CONCLUSION Our results show that Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. These findings indicate that Rip2 may be a promising novel therapeutic target to reduce excess vascular permeability in ischaemic heart disease.
منابع مشابه
Pharmacological postconditioning effect of muramyl dipeptide is mediated through RIP2 and TAK1.
AIMS Despite their ability to cause septic shock and myocardial dysfunction, components of Gram-negative bacterial cell walls, like lipopolysaccharide, have been shown in numerous studies to induce myocardial protection during ischaemia-reperfusion injury. Muramyl dipeptide (MDP) is another such component recognized by an intracellular receptor, nucleotide-binding oligomerization domain 2. Rece...
متن کاملMolecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction
Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...
متن کاملNovel atypical PKC inhibitors prevent vascular endothelial growth factor-induced blood-retinal barrier dysfunction.
Pro-inflammatory cytokines and growth factors such as VEGF (vascular endothelial growth factor) contribute to the loss of the BRB (blood-retinal barrier) and subsequent macular oedema in various retinal pathologies. VEGF signalling requires PKCβ [conventional PKC (protein kinase C)] activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not aff...
متن کاملHeterozygous disruption of Flk-1 receptor leads to myocardial ischaemia reperfusion injury in mice: application of affymetrix gene chip analysis
This study addresses an important clinical issue by identifying potential candidates of vascular endothelial growth factor (VEGF) signalling through the Flk-1 receptor that trigger cardioprotective signals under ischaemic stress. Isolated working mouse hearts of both wild-type (WT) and Flk-1(+/-) were subjected to global ischaemia (I) for 30 min. followed by 2 hrs of reperfusion (R). Flk-1(+/-)...
متن کاملMaternal diabetes up‐regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up-regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose-tolerant a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 107 4 شماره
صفحات -
تاریخ انتشار 2015